Coordinate Definition: In a right-angled triangle with vertex at origin $(0,0)$ and a point $P(x, y)$ on the terminal side with radius $r$ (hypotenuse):
$\sin \theta = \frac{y}{r}$ (Opposite/Hypotenuse)
$\cos \theta = \frac{x}{r}$ (Adjacent/Hypotenuse)
$\tan \theta = \frac{y}{x}$ (Opposite/Adjacent)
Reciprocal Relations:
$\csc \theta = \frac{1}{\sin \theta}$, $\sec \theta = \frac{1}{\cos \theta}$, $\cot \theta = \frac{1}{\tan \theta}$
Quotient Relations:
$\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\cot \theta = \frac{\cos \theta}{\sin \theta}$
Pythagorean Identities:
$\sin^2 \theta + \cos^2 \theta = 1$
$\sec^2 \theta – \tan^2 \theta = 1$ (implies $\sec^2 \theta = 1 + \tan^2 \theta$)
$\csc^2 \theta – \cot^2 \theta = 1$ (implies $\csc^2 \theta = 1 + \cot^2 \theta$)