Solution:
The goal is to express all terms with the same base (3) and use the Product Rule $a^m \times a^n = a^{m+n}$.
The value is 3.
Solution:
Express all bases as powers of prime numbers ($25=5^2$, $243=3^5$, $16=2^4$, $8=2^3$).
The simplified value is $\frac{3375}{512}$.
Solution (Left Hand Side – L.H.S.):
Break down each term and use the Negative Exponent of a Fraction Rule $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$ and the Fractional Exponent Rule $\sqrt[n]{a^m} = a^{\frac{m}{n}}$.
Term 1: $\left(\frac{64}{125}\right)^{-\frac{2}{3}}$
$64 = 4^3$ and $125 = 5^3$.
$\left(\frac{64}{125}\right)^{-\frac{2}{3}} = \left(\left(\frac{4}{5}\right)^3\right)^{-\frac{2}{3}} = \left(\frac{4}{5}\right)^{(3 \times -\frac{2}{3})} = \left(\frac{4}{5}\right)^{-2} = \left(\frac{5}{4}\right)^2$
Term 2: $\frac{1}{\left(\frac{256}{625}\right)^{\frac{1}{4}}}$
$256 = 4^4$ and $625 = 5^4$.
$\frac{1}{\left(\frac{256}{625}\right)^{\frac{1}{4}}} = \frac{1}{\left(\left(\frac{4}{5}\right)^4\right)^{\frac{1}{4}}} = \frac{1}{\left(\frac{4}{5}\right)^{(4 \times \frac{1}{4})}} = \frac{1}{\left(\frac{4}{5}\right)^1} = \frac{5}{4}$
Term 3: $\frac{\sqrt{25}}{\sqrt[3]{64}}$
$\sqrt{25} = 5$
$\sqrt[3]{64} = \sqrt[3]{4^3} = 4$
$\frac{\sqrt{25}}{\sqrt[3]{64}} = \frac{5}{4}$
Combining the terms:
Since L.H.S. = $\frac{65}{16}$ and R.H.S. = $\frac{65}{16}$, the statement is proven.